Shrimati Indira Gandhi College

Nationally Accredited at 'A' Grade (3rd cycle) By NAAC

Tiruchirappalli-2

HUMAN PHYSIOLOGY Subject Code: 16SCCBC2

Dr.T.Karpagam
Asst. Prof. Department of Biochemistry

I BSc BIOCHEMISTRY

Chemical Composition of Brain, Nervous Tissue And Energy Adaptation

II SEMESTER

Content

1. Chemical composition of the Nervous tissue

2. Chemical composition of the Brain

3. Energy Adaptation of Brain

Chemical composition of the Nervous Tissue

Nervous tissue is characterized by

- high lipid and protein
- Complex lipids (e.g. phospholipids and sphingophospholipid) and
- unesterified cholesterol are the most abundant lipids.

It does not contain

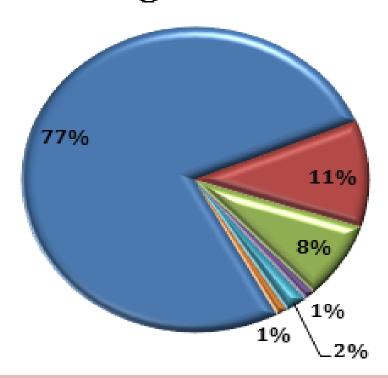
Saccharides.

Neurons.....

- Neurons synthesizes the longest fatty acids in the human body.
- Presence of very long chain FA is quite usual (often in the form of hydroxy acids).
- ❖TAG Triacyl Glycerol are missing.

Role of Proteins....

- Irreplaceable role as channels, transporters, receptors and neurotransmitters.
- The most important transporter -Na+/K+-ATPase,
- Responsible for maintenance of the resting membrane potential, at the cost of a high energy consumption.
- It takes up 70 % of the total energy expenditure.


Myelin sheath of neurons are composed of

ipids (glycolipids, sphingomyelin etc.)

proteins (e.g. myelin basic protein)

Composition of Brain

Composition of the Average Human Brain

- Water
- Lipids (fats)
- Protein
- Carbohydrate
- Soluble Organic
 Substances
- Inorganic Salts

- Water 80 percent.
- Solids -20 percent.
- The water content of brain is little more than that of spinal cord.
- In brain, the grey matter where nerve cell bodies are present contains more water than the whole matter where the nerve fibres are mainly found.

- The solids mainly composed of proteins, lipids, small amounts of organic extracts & inorganic salts.
- Proteins 38 to 40 % of total solids.
- They include globulins, nucleoproteins, albuminoid called neurokeratin.
- A fraction of the brain proteins remains combined with copper forming Caeruloplasmin.

- Lipid -50 to 54 % of the total solids.
- The important lipids phospholipids, cholesterol, cerebrosides, amino-lipids, and sulphur containing lipids.
- The principal inorganic salts Potassium, Phosphate, Chloride, Sodium.
- Potassium is highly significant in the nerve impulse.

White matter, peripheral nerves contain more cerebrosides, free cholesterol, and sphingomyelin than grey matter.

Pathology

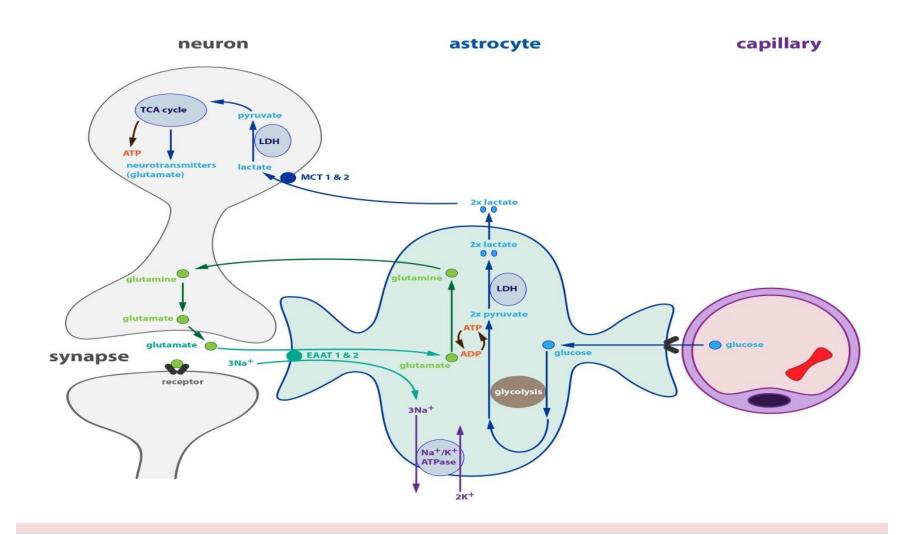
- An increased deposition of copper is found in the brain tissue in Wilson's disease.
- The considerable increase in the concentration of sphingomyelin is found in Niemann-Pick disease.

- Brain constitutes only 2 % of the total body weight
- But its metabolic demands are extremely high.
- It utilizes 20 % of the total oxygen and 20 % of the total glucose consumption.
- ❖ The glucose is used to maintain the membrane potential through Na⁺/K⁺–ATPase and other processes involved in transport of ions across the membrane.

- Brain is the most sensitive organ to oxygen or glucose deficit.
- Shortage of oxygen causes unconsciousness within few tenths of seconds and
- Damage to neurons becomes irreversible after about 5 minutes.
- The rate of neuronal death depends on many factors, for example temperature.

- People with hypothermia have significantly reduced cellular metabolism and
- Demands for oxygen and nutrients supply decrease leading to a longer survival in their absence.
- Value of the respiratory quotient of brain is very close to 1.
- RQ, calculated as a proportion of **produced CO₂** and **consumed O₂ RQ = VCO₂ / VO₂**)
- Brain metabolism utilizes almost exclusively saccharide sources, particularly glucose.
- Its daily consumption is about 120 g.

- Brain does not utilize fatty acids.
- *Fatty acids Transported in bloodstream bound to the albumin, fatty acids are unable to cross the hemato-encephalic barrier.
- However, during a long-term starvation brain metabolism adapts to the consumption of ketone bodies.
- A full adaptation develops approximately within three weeks of starvation.
- After this period, the brain is able to cover up to 50% of its energy expenditure from the oxidation of ketone bodies.


The role of astrocytes

- Glucose is consumed mainly by astrocytes.
- Neurons themselves utilize other substrates: primarily lactate and pyruvate.
- These substances are produced and released into the extracellular space by astrocytes and followed by an absorption into neurons.
- The production of a lactate in astrocyte is coupled with the activity of neuron.

The role of astrocytes

- Astrocytes play an important role in the recycling of glutamate-important excitatory neurotransmitter.
- Glutamate from the synaptic cleft is transported into the astrocytes through symport with sodium cations.
- ❖ Increased concentration of Na⁺ in astrocyte causes an activation of Na⁺/K⁺-ATPase, which restores the electrochemical gradient necessary for transport.
- Astrocytes **convert glutamate into glutamine** and return it back to the neuron to the further utilization.
- * Both of the above-mentioned processes require **ATP**.

The role of astrocytes

Neuronal Activity

When the activity of neuron is high

It secretes a lot of glutamate into the synaptic cleft.

Increased transport of glutamate into the astrocyte

Activates Na+/K+-ATPase

Conversion of glutamate into glutamine.

This stimulates the glycolysis leading to an increase in glucose intake from blood and ATP Synthesis

Neuronal Activity

More lactate is produced

which is then utilized by neurons

Astrocytes contain small quantities of glycogen

Undergo an intense metabolism

Glycogen acts as a short-term energy reserve

Until the supply of glucose is increased

- *Ammonia is able to freely cross the haematoencephalic barrier.
- If its concentration in blood increases
- It significantly interferes with the brain metabolism.

- Excess of glutamate leads to a disruption in its transport from synaptic cleft
- called excitotoxic neuronal damage with an impaired neurotransmission.
- Excessive glutamate causes a change in osmotic relationship between the inner and outer environment.
- The resulting influx of water leads to brain edema (intracellular at first and later extracellular as well).

Conditions that cause hyperammonemia...

- *An insufficient synthesis of urea due to the damage to liver function.
- Quick/fulminant liver failure e.g. paracetamol poisoning - liver encephalopathy.
- They are caused by the toxicity of ammonia.
- Symptoms confusion, disorientation, agitation, unconsciousness or coma.
- There are four grades of this encephalopathy (I-IV).

Comparative Brain metabolism -

- Brain requirements and metabolism have different aspects as compared to other body parts.
- All vertebrates have a blood-brain barrier that allows metabolism inside the brain to operate differently from metabolism in other parts of the body.
- Glial cells play a major role in brain metabolism by controlling the chemical composition of the fluid that surrounds neurons, including levels of ions and nutrients.

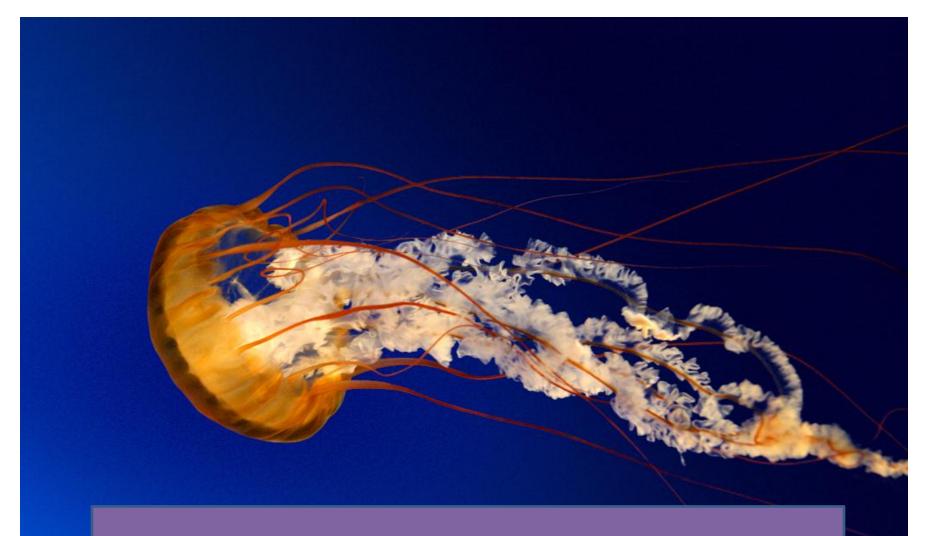
ENERGY CONSUMPTION

- Brain tissue consumes a large amount of energy in proportion to its volume,
- So large brains place severe metabolic demands on animals.
- The need to limit body weight in order,

SUMMARY AND CONCLUSION

- Most of the brain's energy consumption goes into sustaining the electric charge (membrane potential) of neurons.
- Most vertebrate species devote between 2% and 8% of basal metabolism to the brain.
- ❖In primates, however, the fraction is much higher—in humans it rises to 20–25%.

SUMMARY AND CONCLUSION


- The energy consumption of the brain does not vary greatly over time.
- Active regions of the cerebral cortex consume somewhat more energy than inactive regions.
- This forms the basis for the functional brain imaging methods PET, fMRI, and NIRS.

SUMMARY AND CONCLUSION

- The brain typically gets most of its energy from oxygen-dependent metabolism of glucose (i.e., blood sugar),
- but ketones provide a major alternative source, together with contributions from medium chain fatty acids (octanoic and hexanoic acids), lactate, acetate, and possibly amino acids.

Probable questions.....

- 1. Write the composition of Nervous Tissue.
- 2. What is the composition of Brain?
- 3. Write in detail about the metabolic adaptation of Brain?

THANK YOU